Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2228183

ABSTRACT

The COVID-19 pandemic has posed a huge challenge to the world in recent years. The development of vaccines that are as effective as possible and accessible to society offers a promising alternative for addressing the problems caused by this situation as soon as possible and to restore the pre-epidemic system. The present study investigated the preferences of residents in Hungary's second-largest city (Debrecen) for the COVID-19 vaccine. To achieve this aim, a discrete choice experiment was conducted with 1011 participants, and the vaccine characteristics included in the design of the experiment were determined by qualitative methods and a pilot survey: (1) country of origin; (2) efficiency; (3) side effect; and (4) duration of protection. During the data collection at three vaccination sites, respondents were asked to choose between three vaccine alternatives and one "no choice" option in eight decision situations. Discrete choice model estimations were performed using a random parameter logit (RPL) specification with the final model extended to include a latent variable measuring pandemic awareness. The results showed that the vaccine with a Chinese country of origin is the least preferred among the respondents, while the Hungarian and the European vaccines are the most preferred. Furthermore, the increase in the vaccine efficiency level increased the respondents' sense of utility for the vaccine; the short-term side effect was preferred to the long-term one; and the increase in the duration of protection provided by the vaccine increased the respondents' sense of utility for the vaccine. Based on the parameter estimated for the latent variable, it can be concluded that as the level of pandemic awareness (which is more positive among people with chronic diseases and less important among health workers) increases, the choice of a vaccine option becomes more preferred among respondents compared to the "no choice". The results of our investigation could contribute towards increasing compliance in the case of the vaccination-rejecting population, not only for COVID-19, but for any kind of vaccination procedure.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines/therapeutic use , Pandemics/prevention & control , Hungary , Choice Behavior , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
2.
Inform Med Unlocked ; 25: 100691, 2021.
Article in English | MEDLINE | ID: covidwho-1804331

ABSTRACT

OBJECTIVES: The COVID-19 pandemic is considered a major threat to global public health. The aim of our study was to use the official epidemiological data to forecast the epidemic curves (daily new cases) of the COVID-19 using Artificial Intelligence (AI)-based Recurrent Neural Networks (RNNs), then to compare and validate the predicted models with the observed data. METHODS: We used publicly available datasets from the World Health Organization and Johns Hopkins University to create a training dataset, then we employed RNNs with gated recurring units (Long Short-Term Memory - LSTM units) to create two prediction models. Our proposed approach considers an ensemble-based system, which is realized by interconnecting several neural networks. To achieve the appropriate diversity, we froze some network layers that control the way how the model parameters are updated. In addition, we could provide country-specific predictions by transfer learning, and with extra feature injections from governmental constraints, better predictions in the longer term are achieved. We have calculated the Root Mean Squared Logarithmic Error (RMSLE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) to thoroughly compare our model predictions with the observed data. RESULTS: We reported the predicted curves for France, Germany, Hungary, Italy, Spain, the United Kingdom, and the United States of America. The result of our study underscores that the COVID-19 pandemic is a propagated source epidemic, therefore repeated peaks on the epidemic curve are to be anticipated. Besides, the errors between the predicted and validated data and trends seem to be low. CONCLUSION: Our proposed model has shown satisfactory accuracy in predicting the new cases of COVID-19 in certain contexts. The influence of this pandemic is significant worldwide and has already impacted most life domains. Decision-makers must be aware, that even if strict public health measures are executed and sustained, future peaks of infections are possible. The AI-based models are useful tools for forecasting epidemics as these models can be recalculated according to the newly observed data to get a more precise forecasting.

SELECTION OF CITATIONS
SEARCH DETAIL